
Mobile Cloud Middleware

Huber Floresa,∗, Satish Narayana Sriramaa

aUniversity of Tartu, Institute of Computer Science,
Mobile Cloud Lab.,

J. Liivi 2, Tartu, Estonia

Abstract

Mobile Cloud Computing (MCC) is arising as a prominent research area that
is seeking to bring the massive advantages of the cloud to the constrained
smartphones. Mobile devices are looking towards cloud-aware techniques,
driven by their growing interest to provide ubiquitous PC-like functionality
to mobile users. These functionalities mainly target at increasing storage and
computational capabilities. Smartphones may integrate those functionalities
from different cloud levels, in a service oriented manner within the mobile
applications, so that a mobile task can be delegated by direct invocation of a
service. However, developing these kind of mobile cloud applications requires
to integrate and consider multiple aspects of the clouds, such as resource-
intensive processing, programmatically provisioning of resources (Web APIs)
and cloud intercommunication. To overcome these issues, we have developed
a Mobile Cloud Middleware (MCM) framework, which addresses the issues
of interoperability across multiple clouds, asynchronous delegation of mobile
tasks and dynamic allocation of cloud infrastructure. MCM also fosters the
integration and orchestration of mobile tasks delegated with minimal data
transfer. A prototype of MCM is developed and several applications are
demonstrated in different domains. To verify the scalability of MCM, load
tests are also performed on the hybrid cloud resources. The detailed per-
formance analysis of the middleware framework shows that MCM improves
the quality of service for mobiles and helps in maintaining soft-real time
responses for mobile cloud applications.

∗Corresponding author
Email addresses: huber@ut.ee (Huber Flores), srirama@ut.ee (Satish Narayana

Srirama)

Preprint submitted to Journal of Systems and Software August 24, 2015

Keywords: Mobile Cloud Computing, Task Delegation, Code Offloading,
Middleware, Interoperability, Hybrid Cloud

1. Introduction

Mobile Cloud Computing (MCC) is arising as a prominent research area
that is seeking to bring the massive advantages of the cloud to the constrained
smartphones and to enhance the telecommunication insfrastructures with
self-adaptive behavior for the provisioning of scalable mobile cloud services.
MCC focuses on the benefits that can be achieved by the mobile resources when
a mobile operation such as data storage or processing is delegated or offloaded
to the cloud [1, 2, 3]. These benefits include extended battery lifetime, im-
proved storage capacity and increased processing power, thus enriching the
mobile applications along with the mobile user experience. Moreover, MCC
focuses on finding an optimal configuration of a mobile cloud infrastructure
in order to handle the oscillating telecommunication loads (scale-out), to fa-
cilitate the process of deploying services without managing the underlying
technology (on the fly) and to reduce operational and provisioning costs (pay-
as-you-go model) [4].

Mobile cloud applications [5] are considered as the next generation of
mobile applications, due to their promise of bonded cloud functionality that
augment processing capabilities on demand, power-aware decision mecha-
nisms that allow to utilize efficiently the resources of the device, and their
dynamic resource allocation approaches that allow to program and utilize
cloud services at different levels (SaaS, IaaS, PaaS). However, adapting the
cloud paradigm for mobile devices is still in its infancy and several issues
are yet to be answered. Some of the prominent questions are; how to decide
from the smartphone, the deployment aspects (e.g. type of instance) of a
mobile task delegated to the cloud? How to decrease the effort and com-
plexity of developing a mobile application that requires accessing distributed
hybrid cloud architectures? How to handle a multi-cloud operation without
overloading the mobile resources? How to keep the properties (e.g. memory
use, application size etc.) of a mobile cloud application similar to that of a
native one?

Hybrid cloud and cloud interoperability are essential for mobile scenarios
in order to foster the de-coupling of the handset to a specific cloud vendor,
to enrich the mobile applications with the variety of cloud services provided

2

on the Web and to create new business opportunities and alliances [6]. How-
ever, developing a mobile cloud application involves adapting different Web
APIs from different cloud vendors within a native mobile platform. Vendors
generally offer the Web API as an interface that allows programming the
dynamic computational infrastructure that support massively parallel com-
puting. Deploying a Web API on a handset is demanding for the mobile
operating system due to many reasons like compiler limitations, additional
dependencies, code incompatibility etc., and thus in most of the cases the
deployment just fails. Moreover, adapting a Web API requires specialized
knowledge of low level programming techniques and most of the solutions are
implemented as ad-hoc.

In terms of data storage facilitation of the cloud, existing mobile cloud
approaches such as data synchronization (via SyncML) allow the deployment
of a Web API on the device for retrieving data from the cloud. For instance,
Funambol [7] or gdata-calendar Web API can be integrated to an Android
application to synchronize calendar information (e.g. alarms, tasks etc.).
However, this approach focuses on replicating the data located in the cloud
with the data located in the handset, which is not a real improvement. Al-
ternatively, cloud services can be encapsulated as Web services that can be
invoked directly using a simple REST mobile client. However, due to the time
consuming nature of a cloud request, this can cause an overhead in the mo-
bile resources, without a proper asynchronous communication mechanism.
Moreover, by using a REST mobile client, the device is forced to perform
multiple transactions and to handle the results of those transactions locally,
which is costly from the energy point of view of the handset. The number of
transactions are directly associated with the number of cloud services utilized
in the mobile cloud application.

To counter the problems such as the interoperability across multiple
clouds, invocation of data-intensive processing from the handset, dynamic
configuration of execution properties of a delegated task in the cloud, and
to introduce the platform independence feature for the mobile cloud appli-
cations, we propose the Mobile Cloud Middleware (MCM) [2]. The middle-
ware abstracts the Web API of different/multiple cloud levels and provides
a unique interface that responds (JSON-based) according to the cloud ser-
vices requested (REST-based). MCM provides multiple internal components
and adapters, which manage the connection and communication between
different clouds. Since most of the cloud services require significant time to
process the request; it is logical to have asynchronous invocation of the cloud

3

service. Asynchronicity is added to the MCM by using push notification
services provided by different mobile application platforms and by extending
the capabilities of a XMPP-based IM infrastructure [8].

Furthermore, MCM fosters a flexible and scalable approach to create
hybrid cloud mobile applications based on declarative service composition.
Service composition is considered for representing each mobile task to be
delegated as a MCM delegation component that is depicted graphically in
an Eclipse plugin so that the cloud services that conform a mobile cloud
application can be modeled as a data-flow structure based on user driven
specifications. Once developed, a composed task is deployed within the mid-
dleware for execution that is triggered by a single invocation from the mobile.
Finally, MCM prototype was extensively analyzed for its performance and
scalability under heavy loads, and the details are addressed in further sec-
tions.

The rest of this paper is organized as follows; section 2 addresses the
related work and highlights the issues and challenges that need to be investi-
gated in order to implement a mobile cloud architecture based on delegation.
Section 3 introduces the concept of Mobile Cloud Middleware. Section 4 dis-
cusses the MCM hybrid cloud composition mechanism. Section 5 presents a
scalability analysis of the framework and section 6 concludes the paper with
future research directions.

2. Related Work & State of the Art

Recently, there has been a growing interest to bind cloud resources to low-
power devices such as smartphones in order to provide PC-like functionality
to the mobile users [9]. This loose integration happens through a mediator
(aka middleware) that controls every aspect in the communication and coor-
dinates the interaction (online/offline) between the back-end infrastructure
and the mobile device. Currently, two main middleware criterias are utilized
to bring the cloud to the vicinity of a mobile; offloading and delegation. The
architecture for each approach is shown in figure 1.

In a delegation model, a mobile device utilizes the cloud in a service ori-
ented manner in order to integrate services running at different cloud levels
within the mobile applications so that a mobile task (MT) can be delegated
by invoking a cloud service from the handset. This kind of approach requires
to have always available network connectivity and conceptually a mobile task
is delegated when it is computationally unfeasible for the mobile resources [2].

4

In contrast, in an offloading model, a mobile application may be partitioned
(e.g. methods, classes) and analyzed a priori (at development stages) or a
posteriori (at runtime) so that the most computational expensive operations
(aka mobile components) at code level can be identified and offloaded for re-
mote processing [10, 11]. A mobile component (MC) may be offloaded or not,
depending on the impact of its execution over the mobile resources. Con-
ceptually, offloading is preferable only if a mobile component requires high
amounts of computational processing and the same time, low amounts of
data need to be sent in the communication. Otherwise, offloading is not en-
couraged [12]. Moreover, while delegation enhances the mobile with different
functionalities that target multiple aspects of cloud infrastructure, offloading
just enhances the computational operations running at the handset when a
suitable mobile context is sensed.

Multiple research works have proposed solutions to bind computational
cloud services to mobiles [13, 14] from an offloading perspective, mostly due
to virtualization technologies and their synchronization primitives, enabling
transparent migration and execution of intermediate code. However, in an
offloading model much of the advantages of cloud computing are left unex-
ploited and poorly considered. For example, a cloud does not just mean a
virtual machine or a pool of servers which are accessible from the Internet.
It has its own intrinsic features like elasticity, utility computing, fine-grained
billing, illusion of infinite resources, parallelization of tasks, etc. We also
have explored the offloading model, and to counter most of these issues we
proposed the EMCO framework; its details are addressed in a different pub-
lication [3].

However, a mobile application may enrich its functionality from other
strategies that consider multiple cloud sources for delegating and triggering
resource-intensive tasks (e.g MapReduce based) in which their execution can
be configurable and parallelizable among multiple servers (aka multi-cloud
operation). For example, sensor data (e.g accelerometer) may be collected
in cloud storage from multiple devices, and later this information can be
utilized to train a classifier of complex human activities so that when a mobile
application needs to recognize an activity, it can delegate the mobile task to
the cloud through the middleware [15].

We focus in this paper, the delegation of mobile tasks and their com-
position into multi-cloud operations. A multi-cloud operation consists of
delegating mobile tasks to a diversity of cloud services (e.g. from the infras-
tructure level, platform level, etc.) located on different clouds (e.g. public,

5

Figure 1: (a) Code Offloading Architecture (b) Task Delegation Architecture

private, etc.) and orchestating (e.g. parallel, sequential, etc.) those trans-
actions for achieving a common purpose. Developing this kind of mobile
cloud applications requires, from the cloud perspective, the interoperability
among cloud architectures; from the mobile perspective, a considerable ef-
fort to manage the complexity of working with distributed cloud services, a
specialized knowledge to adapt each particular Web API to a specific mobile
platform and an efficient approach that avoids the unnecessary data transfer.

From a delegation perspective, current solutions try to overcome the prob-
lems of multi-cloud service integration in mashups that can be accessible
from the handset. However, they just focus on primitive services at SaaS
level, which are not data-intensive [16]. Finally, middleware approaches for
mobile task delegation similar to MCM have been addressed in the litera-
ture. MCCM (Mobile Cloud Computing Middleware) [16] is a framework
that stands between mobile and cloud, for the creation of mobile mashup ap-
plications that are limited to the use of SaaS. Moreover, the middleware uses
synchronous communication in order to invoke and process a cloud trans-
action. Cloud agency [17] is another solution that aims to integrate GRID,
cloud computing and mobile agents. The specific role of GRID is to of-
fer a common and secure infrastructure for managing the virtual cluster of
the cloud through the use of mobile agents. Agents introduce features that

6

provide the users a simple way for configuring virtual clusters.
Unlike previous solutions, we proposed in this paper a framework (MCM)

that uses asynchronous resource-intensive task delegation for augmenting the
computational and storage capabilities of the mobile devices. MCM addresses
the issues of interoperability across multiple clouds and dynamic allocation of
cloud infrastructure. Moreover, MCM tries to use service composition mech-
anisms in order to decrease the energetic effort (minimize communication
channels) of utilizing multiple clouds in a mobile mashup application.

However, since MCM defines a new interaction model for mobile cloud
applications, there are several infrastructural challenges that must be over-
come. Consequently, the rest of this section examines those issues in detail
and highlights the opportunities of designing the mobile cloud architectures
of the future.

2.1. Middleware for Mobile Cloud Computing: Challenges and Opportunities

In the emerging ecosystem of mobile cloud computing, a rich mobile ap-
plication is one, in which through a soft real-time interactivity, huge amounts
of data are processed and presented to the user as a single result. Performing
such operations in a mobile phone is difficult due to computational limita-
tions of the handset. Thus, computation offloading/delegation is needed for
augmenting on demand the capabilities of the mobile resources.

2.1.1. Delegation of Mobile Tasks to Cloud

Computational/storage delegation has become a common operation that
is supported by any mobile platform through various mechanisms (e.g. Web
sockets, REST-based requests, etc.). Different mobile platforms or versions
of the same mobile platform implement different approaches for managing
network communication. For instance, Android platform level-10 handles
REST-based requests synchronously. In contrast, Android platform level-16
forces the developer to extend any network communication with the Async-
Task Class running on a different thread so that it will be executed asyn-
chronously in the mobile background. This guarantees to keep the real-time
interactivity of a mobile application and to maintain the normal execution
of a mobile application, if an exception arises.

A mobile application that requires resource-intensive functionality of the
cloud can benefit from this asynchronous communication in order to delegate
and monitor the status of a time consuming operation. However, this ap-
proach introduces several drawbacks such as energy consumption (e.g. keep-

7

ing an open connection while transaction is performed), reliability in the
communication (e.g. what happens if the connection fails?) and recover-
ability of a cloud transaction among others. Consequently, asynchronous
middleware support is encouraged for delegating data-intensive tasks to the
cloud [2]. In this asynchronous process, when a mobile application sends a
request to access a cloud service, the handset immediately gets a response
that the transaction has been delegated to remote execution in the cloud,
while the status of the mobile application is sent to local background so that
the mobile device can continue with other activities. Once the process is
finished at the cloud, an asynchronous message about the result of the task
is sent back to the mobile, so as to reactivate the application running in the
background, and thus the user can continue the activity.

Mobile application may rely on push technologies (aka notification ser-
vices) for dealing with remote executions, and thus avoiding the effect of
polling caused by protocols such as HTTP. However, these mechanisms are
considered as black box services which have certain constraints and limita-
tions such as being platform specific (e.g. AC2DM [18]/GCM [19] for An-
droid, APNS [20] for iOS, MPNS [21] for Windows Phone 7, etc.), the size of
the message that can be pushed into the device (e.g. 1024 bytes for Android,
256 bytes for iOS, 4096 bytes for Windows Phone 7 etc.), the number of the
messages that can be sent to a single handset (e.g. 200,000 for AC2DM,
500 for MPNS without authentication) and the maintenance of a particular
infrastructure (e.g. application server, mobile clients) that relies on mobile
platform features (e.g. Broadcast receivers for Android, URI-channels for
Windows Phone 7 etc.) and its related cloud vendor technology (e.g. au-
thentication mechanisms, communication protocols, etc.). Moreover, such
mechanisms are considered to be moderately reliable, and thus are not rec-
ommended in scenarios that require high scalability and quality of service.
For example, AC2DM simply stops retrying after some delivery attempts.

2.1.2. Cloud Service Integration for Mobile Applications

While cloud infrastructure is programmable through the utilization of
the Web API, different clouds present different levels of granularity for con-
figuring the cloud resources. Depending on the cloud vendor architecture,
a Web API may be used for deploying applications from the scratch (e.g.
MapReduce) or for accessing existent functionality, which can be integrated
with other software applications. For instance, Amazon API and typica
API [22] allow to manage EC2 instances (run scripts, attached volumes, etc.),

8

jetS3t [23] API provides access to S3/Walrus and GData API [24] enables
configuring services such as calendar, analytics, etc. Consequently, software
applications that require cloud intercommunication are forced to implement
multiple Web APIs.

Since a Web API may suffer from disuses, changes or replacements with
time due to many reasons such as new Web API releases, improvements,
etc., the development of applications becomes tightly coupled and difficult
to port, to reuse and to maintain. To address most of these problems, several
open source projects have been started. For instance, jclouds [25] is a multi-
cloud library that claims transparent communication with different cloud
providers and the reuse of the source code while working with different ser-
vices. Jclouds provides a core library which contains the core functionality
and a set of libraries which handle the communication with any particu-
lar cloud. Current version of jclouds supports Amazon, GoGrid, VMWare,
Azure and Rackspace. Other projects such as Apache Libcloud [26] and Da-
sein Cloud API [27] also provide a Web API that abstracts away differences
among multiple cloud providers, however currently, jclouds API is the one
that supports more cloud vendors. Other projects such as deltacloud [28]
focus on managing particular services with the same Web API. For instance,
deltacloud allows utilizing the same code routines for starting an instance in
Amazon and in Rackspace.

Even though there are many Web APIs that can be used for abstract-
ing the communication with different cloud vendors, most of them are not
deployable within a mobile platform due to several drawbacks such as ad-
ditional dependencies, incompatibility with the mobile platform, integration
with the compiler, etc. For instance, the dalvik virtual machine of Android
offers just a set of java functionality. Consequently, the richness of the lan-
guage can not be exploited and libraries such as jclouds or typica can not be
executed on mobile platforms.

Furthermore, the development of mobile cloud applications using Web
APIs, increases dramatically the effort of implementing simple operations
such as offloading a file to remote storage, etc. For instance, we have ported
jetS3t API for Android platform level-10 and its apk file requires approxi-
mately 4.55 Mb of storage on the mobile. Moreover, the application uses syn-
chronous communication for delegating data to cloud storage (S3/Walrus).
Therefore, the mobile resources get frozen while the transaction is being
completed (≈ 6 seconds when uploading a file of 3 Mb using a bandwidth
with an upload rate of ≈ 1409 kbps). Even more, the source code is not

9

compatible with higher versions of Android. Consequently, the application is
not portable and a complete re-implementation is needed for using it within
other Android versions.

Currently, Web APIs for mobiles are still under development and often
target simple services such as storage. For instance, at the time of writing
this paper, Amazon has just released the beta version of the Web API for
accessing S3 for both Android and iOS platforms. Thus, more testing is
needed over this Web APIs, before they can actually be embedded into the
mobile applications that can be distributed in the mobile market.

3. Mobile Cloud Middleware

MCM is introduced as an intermediary between the mobile phones and
the clouds for managing asynchronous delegation of mobile tasks to cloud re-
sources. MCM hides the complexity of dealing with multiple cloud providers
by abstracting the Web APIs from different clouds in a common opera-
tion level so that the service functionality of the middleware can be added
based on combining different cloud services. Moreover, MCM enables the
development of customized services based on service composition, in order
to decrease the number of mobile-to-cloud transactions needed in a mobile
cloud application. The architecture is shown in figure 2. When a mobile
application tries to delegate a mobile task to a cloud, it sends a request
to the TP-Handler component of the middleware, which can be based on
several protocols like the Hypertext Transfer Protocol (HTTP) or the Ex-
tensible Messaging and Presence Protocol (XMPP). The request is imme-
diately followed by an acknowledgement from MCM (freeing the mobile)
and it consists of a URL with the name of the server, the service being re-
quested and the configuration parameters, which are applied on the cloud
resources for executing the task. For instance, http://ec2-x-x-x-x.compute-
1.amazonaws.com:8080/MCM/SensorAnalysis represents a processing task
that triggers a MapReduce activity recognition algorithm over a set of sen-
sor data (accelerometer and gyroscope) collected by the mobile in order to
discover reading patterns. The request also includes information regarding
the cloud vendor, type of instance, region, image identifier and the rest of
parameters associated with that particular service. Notice that different ser-
vices involves the utilization of different parameters within a request. Once
at the MCM, the request is then processed by the MCM-Manager for cre-
ating the adapters that will be used in the transactional process with the

10

Figure 2: Architecture of the Mobile Cloud Middleware

clouds. Figure 3 shows the interaction logic of the components of MCM.
When the request is forwarded to the MCM-Manager, it first creates a

session (in a transactional space) assigning a unique identifier for saving the
system configuration of the handset (OS, clouds’ credentials, etc.) and the
service configuration requested. The identifier is used for handling different
requests from multiple mobile devices and for sending the notification back
when the process running in the cloud is finished. The transactional space
is also used for exchanging data between the clouds (to avoid offloading the
same information from the mobile, again and again) and manipulating data
acquired per each cloud transaction in a multi-cloud operation. Based on
the request, the service transaction is managed by the Interoperability-API-
Engine or the Composition-Engine (single or compose service invocation,
respectively).

In the case of a single service invocation, the request is handled by the
Interoperability-API-Engine, which selects, at runtime, based on request the
Web API to utilize in a cloud transaction. The engine extends the interop-
erability features to the Adapter-Servlets component, which contains the set
of routines/functions that are used to invoke a specific cloud service. The
MCM-Manager encapsulates the API and the routine in an adapter for per-
forming the transaction and accessing the XaaS. Basically, an adapter is a
runnable abstract class that provides a generic behavior for a mobile task.
We utilized Gson [29] for loading and serializing mobile tasks.

In contrast, if the request consists of a composite service invocation, the
Composition-Engine (explained in detail in section 4) interprets the service
schema and acquires the adapters needed for executing the services from the
Interoperability-API-Engine. The hybrid cloud property of an adapter is

11

achieved by using the Clojure [30] component that encapsulates several Web
APIs. Each adapter keeps the connection alive between MCM and the cloud
and monitors the status of each task running at the cloud. An adapter can
store data in the transactional space, in order to be used by another adapter.

Once the single/composite service transaction is completed, the result
is sent back to the handset in a JSON (JavaScript Object Notation) for-
mat. MCM-Manager uses the asynchronous notification feature to push the
response back to the handset. Asynchronicity is added to the MCM by
implementing the Google Cloud Messaging for Android (GCM), the Apple
Push Notification Services (APNS) and the Microsoft Push Notification Ser-
vice (MPNS) protocols for Android, iOS and Windows Phone 7 respectively.
APNS messages are sent through binary interface that uses streaming TCP
socket design. Forwarding messages to device happens through constantly
open IP connection. MPNS messages are delivered through URI channels
that can be invoked via REST/POST with the possibility of create up to 30
different channels for pushing data to the applications (one application cor-
responds to one channel). Similarly, GCM mechanism lets to push a message
into a queue of a third party notification service, which is later sent to the
device. MCM also supports previous Android Cloud to Device Messaging
Framework (AC2DM), which was recently deprecated by Google, but shares
similar implementation with GCM. Once the message is received, the system
wakes up the application via Intent Broadcast, passing the raw message data
received straight to the application.

Alternatively, MCM also has support for sending messages using the Mo-
bile Cloud Messaging Framework based on XMPP [8], which extends an
ejabberd [31] infrastructure for delivering messages to any smartphone that
implements an XMPP mobile client. Basically, the framework reuses the IM
infrastructure features (e.g. JIDs, authentication, etc.) for sending notifica-
tion based on the JID. Messages consist of XML stanzas with a new attribute
that differentiates the message from the other stanzas in the mobile client.

MCM is implemented in Java as a portable module based on Servlets 3.0
technology, which can easily be deployed on a Tomcat Server or any other
application server such as Jetty or GlassFish. Web APIs are encapsulated
using Clojure, and thus are accessed by a common API. This encapsulation
guarantees updating deprecated Web APIs with newer versions which are
released constantly by the cloud vendor. Moreover, Clojure is also considered
as its distributed nature introduces flexibility for scaling the applications
horizontally, and thus augmenting the faul-tolerant properties of the overall

12

Figure 3: Interaction logic of the components of Mobile Cloud Middleware

system. Moreover, Clojure also provides portability in the design. Thus,
decreasing the effort of migrating the whole architecture to more suitable
telecommunication programming languages.

Hybrid cloud services from Amazon EC2, S3, Google and Eucalyptus
based private cloud are considered. Jets3t API enables the access to the
storage service of Amazon and Google from MCM. Jets3t is an open source
API that handles the maintenance for buckets and objects (creation, dele-
tion, modification). A modified version of the API was implemented for
handling the storage service of Eucalyptus, Walrus. Latest version of jets3t
also handles synchronization of objects and folders from the cloud. Typica
API and the Amazon API are used to manage (turn on/off, attach volumes)
the instances from Eucalyptus and EC2 respectively. MCM also has support

13

for SaaS from facebook, Google, AlchemyAPI.com and face.com.
MCM and the resource intensive tasks can easily be envisioned in several

scenarios. For instance, we have developed several mobile applications that
benefit from going cloud-aware. Zompopo [5], consists of the provisioning
of context-aware services for processing data collected by the accelerome-
ter with the purpose of creating an intelligent calendar. CroudSTag [32],
consists of the formation of a social group by recognizing people in a set of
pictures stored in the cloud. Finally, Bakabs [5] is an application that helps in
managing the cloud resources themselves from the mobile, by applying linear
programming techniques for determining optimized cluster configurations for
the provisioning of Web-based applications.

4. Hybrid Cloud Service Composition of MCM

While delegating a mobile task to the cloud may enrich the mobile ap-
plications with sophisticated functionality and release the mobile resources
of heavy processing, frequent delegation rates (mobile-to-cloud transactions)
may introduce costly computational expenses for the handset. Therefore,
approches that enables to avoid unnecessary communication overhead such
as those based on service composition must be encouraged. Service com-
position consists of the integration and re-utilization of existent distributed
services for building more complex and thus more rich service structures.
Most of these structures are developed graphically as control or data flow
based models. For instance, YahooPipes is a composition tool based on the
concept of Unix pipes. A pipe depicts a data resource on the Web (e.g. RSS
feeds etc.) that can be filtered, sorted or translated. Several pipes can be
joined together into a single result for extracting information according to
the needs of the user.

Service composition enriches a single service invocation by adding, execut-
ing, orchestrating and joining multiple service requests (treating each service
as an individual task) in a common operation. In order to foster a flexible
and scalable approach, to compose hybrid cloud services and to bring the
benefits of service composition to the mobiles, MCM implemented a service
composition mechanism that enables to automate the execution of a work-
flow structure with a single mobile offloading. Moreover, tasks are composed
using a declarative approach, where the workflow is modeled graphically and
deployed in the middleware for execution by using an Eclipse plugin.

14

4.1. Hybrid Cloud Service Implementation
The MCM composition editor is developed as a plugin for the Indigo

version of Eclipse. Basically, after configuring the plugin with the remote
location of the MCM, it retrieves the list of services that are available at
the middleware for mobile delegation (e.g. sensor analysis, text extraction,
etc.) so that each service (cloud transaction) can be depicted graphically as a
MCM delegatiOn Component (MOC). The plugin is developed by combining
the capabilities of GEF [33] (Graphical Editing Framework) and EMF [34]
(Eclipse Modeling Framework). GEF is used for creating the graphical editor
that consists of a palette of tools (MOC, connector and mouse pointer) and
a blank frame in which the MOC is dragged and dropped multiple times for
building the work flow. Each MOC provides standard inputs and standard
outputs that represent the receiving/sending of messages in JSON format
that are used for the intercommunication of components. Thus, the combi-
nation of MOCs is tied to the matching between inputs and outputs. Since an
individual service usually is triggered for execution by a REST request that
responds with a JSON payload, when passing parameters between MOCs,
the JSON payload is analyzed and all the necessary parameters are extracted
from it for creating a request that matches the input of the next MOC. This
request is loaded into the MOC using Gson so that it can be executed.

A MOC is drawn by extending the draw2d[33] library (Node class) with
a label object. When the component is active on the frame (focus on), its
properties view pops up so that the component can be customized. The
properties view consists of 1) a description category that is used to specify
the MCM service which is selected from a list (previously retrieved) contained
in a ComboBoxPropertyDescriptor; once the service is selected, the service
name is set in the label object with its respective URL value as attribute,
2) an inputs category that describes the list of inputs of the service selected
in (1), which basically represents the execution properties that depend on
the Web API being utilized, along with the required data for executing the
task at the cloud. Input parameters may be dynamic or static. A dynamic
input value is one that is obtained from a connected MOC. In contrast, a
static input value is defined by the user as plain value (e.g. file path), 3) an
outputs category that describes the list of outputs of the service selected in
(1), which represents the results of the cloud transaction. Both, (2) and (3)
also provide information related to other MOC which may be connected to
its inputs/outputs.

EMF is used for creating an XML-based representation of the work flow

15

(serialization of the model). This serialization consists of describing each
MOC and connection relations as data type and flow conditions, respectively,
so that they can be deployed and published at the middleware for execution
using the MCM-Composition engine. Notice that the XML description is
utilized mainly for validating the execution of the workflow and for checking
the dependecies prior to the execution of a MOC. In the XML description,
each data type is described by mapping its graphical representation into
object properties (e.g. height, weight, etc.) and input/output attributes
(e.g. bucket name, security group identifier, etc.). For instance, the MOC
Start Instance by default establishes a height of 50px and width of 150px,
it is invoked by performing a request to the URL with value http://ec2-x-
x-x-x.compute-1.amazonaws.com:8080/MCM-/StartInstance and it requires
as input parameters, an image id (e.g. ami-xxxxxxxx), a provider name (e.g.
amazon), an instance size (e.g. large, small, etc.), a region (e.g. us-east-1c)
and an username, in order to generate an Instance object of typica library as
output. This Instance object is passed to another MOC (e.g. RunScript) as
serialized dynamic parameter along with the path of the file that is defined
by the user as static input.

Once the XML description of the composed service is deployed at the
middleware, the MCM-Composition engine is in charge of performing three
tasks for executing the new composed service. These tasks consist of publish-
ing, converting and executing. The publishing task is performed once the file
is deployed. It consists of assigning a unique URL for invoking the service via
the TP Handler. The service is named according to the name of the file which
is deployed (if name is already existing then service cannot be deployed). The
converting task is performed once the service has been requested. It consists
of parsing the XML file for getting the individual information of each MOC.
This information is passed to the Interoperability API engine for creating the
adapters (as described in section 3) and performing the cloud transaction.
Notice that in runtime a MOC may have one or more associated adapters.
Finally, the executing task is in charge of mapping the entire file (from top
to bottom) and executing each service using the adapters created previously.
The execution follows the structure of the workflow considering any parallel
or sequential tasks. When a service is executed, the task is monitored by the
MCM from start to end. Once the result of each task is obtained, a request
is created with it and is redirected to the next MOC.

16

4.2. Hybrid Mobile Cloud Application - Demo Scenario
To demonstrate the composition feature of MCM, a hybrid mobile cloud

application has been developed using MCM and its composition tools. We
have developed the application in Android platform due to its popularity
in the mobile market and unrestricted uses. However, the application could
be developed for iOS or Windows Phone 7. The application benefits from
its multi-cloud nature for performing a variety of cloud analysis, which are
invoked by a single transaction. The aim of the application is to figure out
whether the user likes or not the content of the Web pages that the user is
reading on the mobile, so that the text of the most interesting articles can be
extracted along with some keywords, which are obtained through machine
learning analysis. Whether the user likes a particular page is calculated based
on approximating the angle at which the phone is held to a fixed threshold
which is set by obtaining stable gyroscope measurements. Later, from that
point, it is sensed whether the handset experiments show intense movement
or not. The information extracted from the analysis is stored in a Web
document on the cloud for being accessed later through a URL using the
Web browser of a mobile or a standalone computer.

Since most of the functionality of the mobile application is located on
multiple clouds and is managed by the MCM, the client application running
on the mobile is lighter and simple to build. The application consists of an
EditText for typing an URL and a WebView for displaying its content. Once
packed in an apk file, the application requires ≈ 512 Kb of storage on the
mobile. When the application is launched, a concurrent process is triggered
in the background. This process is used to store the information sensed by
the accelerometer and the gyroscope sensors along with the active URL of
the WebView, into a SQLite database. With each measurement written to
the database, one tuple of the form, <ti, [xi, yi, zi], [g1i, g2i, g3i], URL
>is stored. Where ti represents a timestamp measured in seconds, [xi, yi,
zi] represents the data of the three axes of the accelerometer measured at
time ti and [g1i, g2i, g3i] is the data of the three directions of the gyroscope
measured at time ti.

When the application is closed (goes to the background), an Async task is
executed on the OnPause method of the application. This task consists of a
unique offloading to the URL of the compose service published at MCM. This
offloading contains 1) the data that will be used in the multi-cloud analysis
(in this case, the database file), 2) the execution properties that allow to
configure the cloud resources in runtime (bucket name, Amazon image id,

17

instance size, region, Amazon username, eucalyptus image id, eucalyptus
username, sensor analysis provider, text analysis provider, keyword analysis
provider and document name) and 3) a GCM request for registering the
mobile at Google notification servers. The registration is mandatory for
sending messages to the mobile using MCM and it is required only once. On
this state, the application (activity) is also terminated so that the user can
continue with other activities. However, the application will be re-activated
via Broadcast Intent once a message from the notification service arrives
with the result of the composition (URL of the document). The application
uses MCM for invoking the services from Amazon, Eucalyptus, Google and
AlchemyAPI.com. The cloud services are defined for composition in the
Eclipse plugin as follows.

After adding a file with extension *.mcm in the Java perspective of
Eclipse, the composition tools of the plugin get enabled. The following ser-
vices implemented at MCM are considered for the composition; CreateBucket
represents a service that makes use of the Web Amazon API for creating a
bucket in S3 and requires a bucket name as parameter. UploadFileToBucket
uses jetS3t to locate objects in a specific Amazon bucket and requires a
bucket name target. StartInstance, EndInstance and RunScript use typica
for handling computational instances in Amazon and Eucalyptus. Here, the
infrastructure parameters are used (instance size, region, amazon username,
amazon image id, eucalyptus username, etc.). KeywordExtraction can be
assumed as a black box service for the text analysis that is available by using
the Web Alchemy API (text analysis provider). CreateDocument uses the
gdata-docs API for creating the document, whose name is passed as param-
eter. Finally, GCMNotification represents the push notification service of
Google.

Before creating the workflow of the application, some sub-composition is
needed first. The subcomposition process consists of creating the LinkEx-
traction and TextExtraction services. The LinkExtraction is an Amazon
computational service that applies a MapReduce activity recognition algo-
rithm over the sensor data in order to understand how the user was holding
the handset, and thus extracting the more interesting URLs (explained in
Appendix A). LinkExtraction is created by connecting the MOCs StartIn-
stance, RunScript and EndInstance. Similarly, TextExtraction is a service
running on Eucalyptus that implements the BulletParser [35] for extracting
the text of a set of URLs (Web pages). TextExtraction shares the same logic
as LinkExtraction and is created by connecting the MOCs StartInstance,

18

Figure 4: Workflow executed by MCM and triggered by a single service invocation

RunScript and EndInstance. However, notice that RunScript differs on both
services as the property file path varies.

The workflow is structured by connecting the mentioned MOCs. The
logic of the workflow is shown in figure 4 and it considers the following.
After the database is offloaded to MCM, the middleware creates a bucket to
locate the file (CreateBucket) and the location of the file (URL) is passed
to the LinkExtraction service to obtain a list of URLs. Later, the list of
URLs is passed in parallel to the TextExtraction and KeywordExtraction
service. Once these services are finished and MCM obtains their results,
MCM connects to Google docs to create a document with that information.
Finally, MCM sends a message via GCM to the mobile device. The message
contains the URL of the document which can be viewed in the browser of
the mobile.

On the basis of the functional prototype of the mobile cloud application
presented, we can derive that it is possible to handle process intensive hy-
brid cloud services from the smartphones, via the MCM. Figure 5 shows the
sequence of activities that are performed during the execution of the appli-
cation. Here the total application duration i.e. the total mobile cloud service
delegation time for handling a multi-cloud operation asynchronously, is:

Tmcsa
∼= Ttr + Tm + ∆Tm +

n∑
i=1

(Ttei + Tci) + Tpn (1)

19

Figure 5: Timestamps of the application scenario

Where, Ttr is the transmission time taken across the radio link for the
invocation between the mobile phone and the MCM. The value includes the
time taken to transmit the request to the cloud and the time taken to send
the response back to the mobile. Apart from these values, several parame-
ters also affect the transmission delays like the Transmission Control Protocol
(TCP) [36] packet loss, TCP acknowledgements, TCP congestion control etc.
So a true estimate of the transmission delays is not always possible. Alter-
natively, one can take the values several times and can consider the mean
values for the analysis. Tm represents the latency of receiving a request for
delegation and sending a response to the mobile about its status. ∆Tm is the
extra performance time added by the components of MCM for processing
the request. Tte is the transmission time across the Internet/Ethernet for
the invocation between the middleware and the cloud. Tc is the time taken
to process the actual service at the cloud. ∼= is considered in the equation
as there are also other timestamps involved, like the client processing at the
mobile phone. However, these values will be quite small and cannot be calcu-
lated exactly. The sigma is considered for the composite service case, which
involves several mobile cloud service invocations. However, in other cases the

20

access to multiple cloud services may actually happen in parallel. In such
a scenario, the total time taken for handling the cloud services at MCM,
TCloud, will be the maximum of the time taken by any of the cloud services
(Maxn

i=1(Ttei + Tci)). Finally, Tpn, represents the push notification time,
which is the time taken to send the response of the mobile cloud service to
the device. With the introduction of support for push notification services
at the MCM, the mobile phone just sends the request and gets the acknowl-
edgement back once the multi-cloud operation is performed. However, in
this case, the delays completely depend on external sources like the latencies
with GCM/APNS/MPNS frameworks and the respective clouds [8].

To analyze the performance of the application, a 5 MB of sensor data
was stored in a Amazon bucket. Samsumg Galaxy S II (i9100) with Android
2.3.3, 32GB of storage, 1 GB of RAM, support for Wi-Fi 802.11 a/b/g/n was
considered. Wifi connection was used to connect the mobile to the middle-
ware. So, test cases were taken in a network with an upload rate of ≈ 1409
kbps and download rate of ≈ 3692 kbps, respectively. However, as mentioned
already, estimating the true values of transmission capabilities achieved at a
particular instance of time is not trivial. To counter the problem, we have
taken the time stamps several times (5 times), across different parts of the
day and the mean values are considered for the analysis.

The timestamps of the mobile cloud service invocation of the complete
scenario is shown in figure 6. The value of Ttr + ∆Tm is quite short (< 870
msec), which is acceptable from the user perspective. So, the user has the
capability to start more data intensive tasks right after the last one or go with
other general tasks, while the cloud services are being processed by the MCM.
The total time (workflow) taken for handling the cloud services at MCM,
TCloud (

∑n
i=1(Ttei +Tci)), is also logical and higher as expected. Cloud pro-

cessing time also considers provisioning latency of computational resources.
This latency represents the time of submitting a request for launching a re-
source and obtaining the resource in an active state. Figure 7 and figure 8
show the execution time for each service that participate in the mashup.
Cloud services created from the scratch with IaaS were evaluated on dif-
ferent underlying hardware. Based on the results, we can obseve that the
allocation of cloud resources affects the execution time of a delegated mobile
task, which is configurable dynamically by the middleware.

Finally, Tpn varies depending on current traffic of the GCM service and
has an average of ≈1.56 seconds. This notification average is obtained specif-
ically to GCM through an 8 hours experiments. In the experiment,messages

21

 0

 50

 100

 150

 200

 250

 300

 350

 400

Ttr + ∆Tm Tcloud1 Tcloud2 Tcloud3 Tpn

T
im

e
[i

n
 s

ec
o

n
d

s]

Transmission

0.9

Cloud processing

212
235

261

Push notification

1.56

Figure 6: Mobile cloud service invocation timestamps. Different underlying hardware
is considered for the execution of infrastructure services in Tcloud. Tcloud1, Tcloud2
and Tcloud3 use large, medium and small instances, respectively. Moreover, Tcloud also
considers the provisioning time which has an average of ≈150 secs of any infrastructure
type.

are sent 1 per second for 15 seconds in sequence, then with a 30 minute sleep
time, later followed by another set of 15 messages, repeating the procedure
for 8 hours (240 messages in total). The frequency of the messages is set in
this way, in order to mitigate the possibility of being detected as a poten-
tial attacker (e.g. Denial of Service) to the cloud vendor and to refresh the
notification service from a single requester and possible undelivered data.
Moreover, the duration of the experiments guarantee to have an overview
of the service under different mobile loads, which may arise during different
hours of the day. Experiments were conducted in a Wi-Fi network. Results
are shown in figure 9. We have noticed that GCM messages tend to arrive
in a predictable interval when the service is not utilized periodically. Conse-
quently, the reliability of GCM tends to decrease as the number of requests
for sending notifications are increased [8].

4.3. Hybrid Cloud Service Composition Analysis

In order to analyze how MCM service composition adds value to the
multi-cloud delegation process of a mobile cloud application, let us consider

22

 0

 10

 20

 30

 40

 50

m1.small m1.medium m1.large

T
im

e
[i

n
 s

ec
o

n
d

s]
44

38

25

Figure 7: Execution time of sensor analysis service (LinkExtraction) on different instances:
service at IaaS level

 0

 5

 10

 15

 20

 25

 30

 35

 40

TextExtraction

K
eyw

ordExtraction

C
reateD

ocum
ent

C
reateB

ucket

U
ploadToB

ucket

T
im

e
[i

n
 s

ec
o

n
d

s]

25.0

11.0

3.0 2.5 3.0

Figure 8: Execution time of the different cloud services that participate in the workflow:
services at SaaS level

23

 0.1

 1

 10
D

el
iv

er
y

 T
im

e
[i

n
 s

ec
o

n
d

s]

Messages

Figure 9: Delivery rate for GCM. Experiment over a sample of 240 messages

a similar analysis as the one presented by [12]. In their work, they claimed
that a single offloading benefits the mobile resources if the mobile component,
which is offloaded to the cloud, requires huge amounts of computational
resources to be processed and at the same time, the offloading process requires
small amounts of data to be sent in the communication. Otherwise, it is
preferable not to offload the mobile component and process it locally. We
tried to apply same principle in a delegation model as the mobile cloud
communication is the one which introduces high overheads in the device [5].
In this context, a mobile cloud application that uses hybrid cloud services; it
has to handle all the invocation logic locally, which is translated into multiple
mobile cloud transactions. Moreover, the handset may also be forced to
use extra processing power as each mobile task is delegated. This extra
processing consists of data manipulation on the results acquired per each
cloud transaction. Data manipulation may be needed for joining all the
results collected from the cloud services or simply for re-converting the data
in a suitable format for triggering the next service.

Due to the resource-intensive/time-consuming nature of the cloud services
and the multiple frameworks that enable performing parallel processing on
the cloud (e.g. Hadoop), for this analysis we do not consider that a cloud

24

task can be performed on the mobile resources if the above condition is not
met. We rather focus on how to decrease the number of mobile cloud com-
munication required for delegating mobile tasks to hybrid cloud resources.
With these assumptions in mind, the following example provides a simple
analysis.

Suppose that Ew is the total amount of energy wasted by the mobile when
executing a mobile cloud application. n is the number of hybrid cloud services
in a mobile application (time to offload data). Let B be the bandwith used in
the communication between the mobile and the cloud and D is the size of the
data in bytes that are exchanged. In each delegation, the mobile will consume
(in watts), Pc for the processing performed by the mobile when handling the
results of each cloud transaction, Ptr for transmitting and receiving data.
For this analysis, we consider that transmission and receiving power are the
same. However, depending on the approach for sending the result back to
the mobile (e.g. notification services, real-time protocols such as XMPP etc),
both will differ.

Conceptually, if the mobile cloud application is handled by the mobile
resources using any approach discussed in section 2.1, the total time of energy
consumed in the multi-cloud offloading process will be:

Ew
∼=

n∑
j=1

((Ptr ×
Dj

B
) + Pcj) (2)

In contrast, when using MCM and its service composition mechanism,
the hybrid cloud service integration occurs at the middleware, and thus n
becomes equal to 1. Therefore, one data offloading is needed to trigger a
bunch of different cloud services.

Ew
∼= (Ptr ×

∑m
j=1(Dj)

B
) + Pc) (3)

Where
∑m

j=1(Dj) represents the data sent per each cloud service requested
(if any). Notice that in some cases, no data is sent as the output of one
service may be the triggered input of the next service. So in the equation 3,
m (m ≤ n) is the number of services that participate in the composite service
and require input from the mobile. The main purpose of the composition is to
alliviate the mobile cloud service invocation Tmcsa from unnecessary latency
in the communication and to decrease the transfer of data.

25

Figure 10: Load test setup for the MCM

5. Scalability of MCM

While MCM was successful in handling a multi-cloud operation from a
mobile cloud application, the capabilities of MCM for handling heavy loads
depend on its deployment aspects in the cloud and the dynamic configura-
tion of those at runtime. Dynamic cloud reconfiguration mainly focuses on
the distribution of application components that alleviate the entire system,
when it is facing a certain condition (e.g. High CPU utilization, etc.), thus,
increasing its capabilities for managing concurrency.

To verify the scalability of the middleware, MCM is located in a pub-
lic cloud (Amazon EC2), in a cluster-based configuration that consists of a
front-end node (Load Balancer- LB) and multiple end-nodes (MCM servers).
Figure 10 shows the deployment scenario. Basically, the front-end node dis-
tributes the load between the back-end servers. Therefore, the LB requires
a powerful CPU to handle the heavy demand. HAProxy [37] is considered
as the LB as it allows dynamic behavior to the architecture and new MCM
servers can be added while the system is running (hot reconfiguration). Back-
end servers can be considered as commodity servers which can be replaced
without affecting the overall performance of the cluster. Once, the scenario
was set up, different mobile loads were simulated using benchmarking tools
for testing the horizontal scalability properties of the middleware.

26

5.1. Scalability Analysis of the MCM
Load testing of MCM was performed using Tsung [38] (open source multi-

protocol load testing software). Tsung was deployed in a distributed cluster
composed of three nodes running on separated instances (one primary and
two secondary nodes). The primary node is in charge of executing the test
plan and collecting all the results of each secondary node, so that informa-
tion can be combined and analyzed into a single report using Tsung-plotter
utility. The test plan is structured by blocks and consists of three parts,
the server/client configuration part, in which the machines’ information is
defined. The load part that contains the information related with the mean
inter-arrival time between new clients and the phase duration. Here, the
number of concurrent users is defined. For instance, for generating a load of
three hundred users in one second a mean of 0.0033 was used (Tsung pri-
mary node divided the load in equal parts among the available Tsung nodes).
And finally, the session’ part, in which the testing scenario is configured and
consists of describing the clients’ request (captured using Tsung-recorder).

A single client request consists of simulating the hybrid mobile cloud ap-
plication described in section 4.2. The launch/terminate time of an Amazon
instance is simulated by connecting to a large capacity running instance that
performs the sensor processing. This time is simulated as launching a high
number of instances incurs in large utility costs (not feasible for a single
user). The time is the average calculated from a set of individual samples
times (launching/terminating) that were taken during the day for a small
instance size. This simulation does not affect the overall results, since the
communication with the service is established and the transaction is per-
formed over the cloud resources. Same occurs with Alchemy.com service,
which is constrained by a free request quota. This issue was solved by taking
an estimation about the time that it takes for the service to process a request.
GCM and other services did not present any problem. In the case of GCM,
messages were routed to a single device.

Load traffic is simulated by n concurrent threads, where n varied between
≈ 150 and 650 per Tsung node (TN), making 500 to 2000 concurrent requests
on the load balancer, thus, simulating a large number of concurrent users,
connecting to the MCM. On the cloud front, a load balancer and up to 20
MCM worker nodes were setup. To show the scale on demand of the solution,
the number of server nodes was increased from 2 to 20. Initial amount of
nodes was 2 and 2 nodes were added each time the setup needed to scale.
Servers running on Amazon EC2 infrastructure were using EC2 m1.small

27

 0

 20

 40

 60

 80

 100

2 4 6 8 10 12 14 16 18 20

S
u
c
c
e
ss

 r
a
te

 [
%

]

Number of worker nodes

500
1000
1500
2000

Figure 11: Success rate of concurrent requests over multiple server nodes

instances. A small instance has 1.8 GB of memory and up to 10 GB of
storage. One EC2 computational instance is equivalent to a CPU capacity of
2.66 GHz Intel R©XeonTMprocessor (CPU capacity of an EC2 compute unit do
change in time). Servers were running on 64 bit Linux platforms (Ubuntu).
Finally, the load balancer was setup for using Round-robin scheduling, so the
load can be divided into equal portions among the worker nodes.

In the load test of the MCM, the aim of the experiment is to measure
1) how the access policies of the framework are enhanced by scaling the in-
frastructure horizontally and 2) how the success rate of the requests depends
on the number of framework nodes depending on the number of concurrent
requests. A request is considered as success, if it gets a response back (i.e.
transaction completed) before the connection or response timeout occurs.
Similarly, the success rate indicates the number of requests from all per-
formed requests that have succeeded. The results of the experiments are
shown in figure 11. From the diagram it can be observed that the success
rate follows a logistic function, with the number of nodes. The performance
of eight nodes drops to ≈ 75% after receiving 1500 concurrent requests, how-
ever, 18 nodes can handle this load with almost 100% success rate. It can
also be seen that with current test architecture adding more worker nodes
does not show any visible improvement in the performance after 18 nodes in
contrast when the setup was composed of 2, 4 and 6 nodes.

28

To sum it up, with current MCM implementation, pair nodes deployment
may handle around 100-150 concurrent requests with almost 100% success
rate. An addition of two nodes adds roughly the capacity of handling another
100 requests until the load grows up to ≈ 1800 concurrent requests, when
the load balancer itself becomes a bottleneck. Hence adding more nodes does
not improve the performance as desired. The analysis also shows that the
elasticity of the cloud helps in achieving this required setup easily.

6. Conclusions and Future Research Directions

Mobile and cloud computing are converging as the leading technologies
that are fostering the change to the post-pc era. Mobile devices are look-
ing towards cloud-aware techniques that allow to bind transparently cloud
resources and mobile applications. In this context, hybrid cloud integration
based on service composition is a prominent approach required in a mobile
cloud application, in order to alliviate the mobile resources from unnecces-
sary data transfer. Moreover, a multi-cloud operation based delegation may
empower the device with innovative services based on business collaboration.

We tried to address in this paper the challenges of delegating a mobile
task to multiple clouds and configuring its deployment aspects for execution
by encapsulating multiple Web APIs in a common operation level. We pro-
posed MCM as an intermediary layer in the communication for handling the
asynchronous delegation of a multi-cloud operation, reducing the complexity
of working with distributed hybrid cloud services, decreasing the offloading
times to the cloud from the handset and fostering a scalable and flexible self-
service approach based on composition that enables to reuse, to maintain
and to automate cloud services.

The architecture of the MCM is explained in detail along with its composi-
tion approach through the study of a mobile cloud application that uses cloud
services from Amazon, Alchemy.com, Eucalyptus and Google. To demon-
strate the horizontal scaling of the MCM, a scalability analysis is presented.
The results show that MCM can handle reasonable loads with significant
ease. While the prototype is working fine with the traditional web technolo-
gies like the HTTP and servlets, our future research will consist in extending
the architecture to better suite the cellular network by re-implementating
the middleware using Erlang [39] since it is more suitable for managing high
concurrency and for deploying components on the fly. Erlang also enables
adding and replacing code, while the system is running. Hence, the devel-

29

opment and deployment of new MCM functionality can be done without
restarting the entire system.

7. Appendix A: Sensor Classification Algorithm using MapReduce

The integration of micromechanical sensor technologies within the smart-
phones makes it possible to enrich the usability experience of interacting
with a mobile application by sensing the user’s context and to understand
certain human activities based on the tracking of the user’s intention. Several
prototypes and signal processing algorithms have been developed for human
motion classification and recognition allowing reliable (more than 90% accu-
rate) detection of basic movements [40].

The accelerometer simultaneously outputting tilt, is the most common
sensor that is included within a modern mobile device as it allows track-
ing information that can be used for infering multiple human movements.
Depending on the number of axes, it can gather the acceleration informa-
tion from multiple directions. Generally a triaxial accelerometer is the most
common in mobiles from vendors such as HTC, Samsung, Nokia etc. There-
fore, acceleration can be sensed on three axes, forward/backward, left/right
and up/down. For example: in the case of a runner, up/down is measured
as the crouching when he/she is warming up before starting to run, for-
ward/backward is related with speeding up and slowing down, and left/right
involves making turns while he/she is running.

Similarly, the gyroscope sensor is an actuator based on the principles
of angular momentum conservation that is used for establishing position,
navigation and orientation of the device, among others. It consists of three
axes or freedom degrees (spinning, perpendicular and tilting) mounted in
a rotor which are composed by two concentrically pivoted rings (inner and
outer). The gyroscope is used within the mobile for enhancing techniques
such as gesture recognition and face detection. Furthermore, the combination
of accelerometer and gyroscope sensor data allows to increase the motion
accuracy, and thus approaches such as video stabilization are implemented
on the mobile.

We collected and synchronized in this paper, the measurements of the gy-
roscope and accelerometer along with the URL of the mobile web browser in
order to identify repetitive patterns that can be classified as a specific human
activity (e.g. walking, reading, etc.). Algorithm 1 shows the parallelizable
process of sensor analysis. We used MapReduce as the sensor information can

30

be collected daily from the mobile and uploaded to the cloud, thus, creating a
big repository of analyzable data that requires resource-intensive processing.

Algorithm 1 Sensor Processing with MapReduce
• Map

Require: CSV file
– map function parameter is a <key, value >pair, where:

∗ key - line number
∗ value - line content

– value is split into several variables (gyroscope’s and accelerometer’s
values, timestamp, url)

– gyroscope’s values are examined, they have to be smaller than 0.05
(which means minimal rotation)

– accelerometer’s values are compared to the fixed threshold (to indi-
cate that the user is holding the phone in his hand)

– if the sensors’ values are in range, the map will emit a <key, value
>pair, where:

∗ key - timestamp in seconds
∗ value - url

• Reduce
Require: timestamp, list <url >

– timestamp consists of the relative time in which the measurement
was taken

– count the elements in the list and emit a <key,value >pair, where:
∗ key - time range
∗ value - url

– sort the list in descending order.

8. Acknowledgments

This research is supported by the Tiger University Program of the Esto-
nian Information Technology Foundation, the European Regional Develop-
ment Fund through the EXCS, Estonian Science Foundation grant ETF9287,
Target Funding theme SF0180008s12 and the European Social Fund for Doc-
toral Studies and Internationalisation Programme DoRa. The authors also
thank the anonymous reviewers for their insightful comments.

9. References

[1] M. Satyanarayanan, P. Bahl, R. Caceres, N. Davies, The case for vm-
based cloudlets in mobile computing, Pervasive Computing, IEEE 8 (4)
(2009) 14–23.

31

[2] H. Flores, S. N. Srirama, C. Paniagua, A generic middleware framework
for handling process intensive hybrid cloud services from mobiles, in: 9th
Int. Conf. On Advances in Mobile Computing and Multimedia, ACM,
2011, pp. 87–94.

[3] H. Flores, S. N. Srirama, Adaptive code offloading for mobile cloud appli-
cations: Exploiting fuzzy sets and evidence-based learning, in: Proceed-
ing of the 4th ACM workshop on Mobile cloud computing and services,
2013, pp. 9–16.

[4] H. Flores, S. Srirama, Dynamic configuration of mobile cloud mid-
dleware based on traffic load, in: Mobile Adhoc and Sensor Systems
(MASS), 2012 IEEE 9th International Conference on, 2012, pp. 475–
476. doi:10.1109/MASS.2012.6502552.

[5] H. Flores, S. Srirama, C. Paniagua, Towards mobile cloud applications:
Offloading resource-intensive tasks to hybrid clouds, International Jour-
nal of Pervasive Computing and Communications 8 (4) (2012) 344–367.

[6] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas, J. Kalagnanam,
H. Chang, Qos-aware middleware for web services composition, Soft-
ware Engineering, IEEE Transactions on 30 (5) (2004) 311–327.

[7] A. Onetti, F. Capobianco, Open source and business model innovation.
the funambol case, in: International Conference on OS Systems Genova,
11th-15th July, 2005, pp. 224–227.

[8] H. Flores, S. N. Srirama, Mobile cloud messaging supported by xmpp
primitives, in: Proceeding of the 4th ACM workshop on Mobile cloud
computing and services, ACM, 2013, pp. 17–24.

[9] R. Balan, J. Flinn, M. Satyanarayanan, S. Sinnamohideen, H.-I. Yang,
The case for cyber foraging, in: Proceedings of the 10th workshop on
ACM SIGOPS European workshop, ACM, 2002, pp. 87–92.

[10] X. Gu, K. Nahrstedt, A. Messer, I. Greenberg, D. Milojicic, Adaptive
offloading for pervasive computing, Pervasive Computing, IEEE 3 (3)
(2004) 66–73.

32

[11] Z. Li, C. Wang, R. Xu, Computation offloading to save energy on hand-
held devices: a partition scheme, in: Proceedings of the 2001 interna-
tional conference on Compilers, architecture, and synthesis for embed-
ded systems, ACM, 2001, pp. 238–246.

[12] K. Kumar, Y. Lu, Cloud computing for mobile users: can offloading
computation save energy?, Computer 43 (4) (2010) 51–56.

[13] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu,
R. Chandra, P. Bahl, Maui: making smartphones last longer with code
offload, in: Proceedings of the 8th international conference on Mobile
systems, applications, and services, ACM, 2010, pp. 49–62.

[14] B. Chun, S. Ihm, P. Maniatis, M. Naik, A. Patti, Clonecloud: elastic
execution between mobile device and cloud, in: Proceedings of the sixth
conference on Computer systems, 2011, pp. 301–314.

[15] C. Paniagua, H. Flores, S. N. Srirama, Mobile sensor data classifica-
tion for human activity recognition using mapreduce on cloud, Procedia
Computer Science 10 (2012) 585–592.

[16] Q. Wang, R. Deters, Soa‘s last mile connecting smartphones to the ser-
vice cloud, in: 2009 IEEE International Conference on Cloud Comput-
ing, 2009, pp. 80–87.

[17] R. Aversa, B. Di Martino, M. Rak, S. Venticinque, Cloud agency: A
mobile agent based cloud system, in: 2010 International Conference on
Complex, Intelligent and Software Intensive Systems, Ieee, 2010, pp.
132–137.

[18] Google, Inc, AC2DM, http://code.google.com/android/c2dm/index.html.

[19] Google, Inc, GCM - Google Cloud Messaging for Android,
http://developer.android.com/guide/google/gcm/index.html.

[20] Apple, Inc, APNS, http://developer.apple.com/library/ios/.

[21] Microsoft, Inc, MPNS, http://msdn.microsoft.com/en-us/library/.

[22] typica, typica - A Java client library for a variety of Amazon Web Ser-
vices, http://code.google.com/p/typica/.

33

[23] jets3t, jetS3t - An open source Java toolkit for Amazon S3 and Cloud-
Front, http://jets3t.s3.amazonaws.com/toolkit/guide.html.

[24] Google Inc. , Google Data Protocol,
http://code.google.com/apis/gdata/.

[25] jclouds, jclouds - multi cloud library ,
http://code.google.com/p/jclouds/.

[26] T. A. S. Foundation, Apache libcloud a unified interface to the cloud,
http://libcloud.apache.org/.

[27] dasein, Project, dasein.org - The Dasein Cloud API, http://dasein-
cloud.sourceforge.net/.

[28] Delta Cloud, Delta Cloud - Many Clouds. One API. No problem,
http://incubator.apache.org/deltacloud/.

[29] google-gson, A Java library to convert JSON to Java objects and vice-
versa, http://code.google.com/p/google-gson/.

[30] R. Hickey, The clojure programming language, in: Proceedings of the
2008 symposium on dynamic languages, ACM, 2008, p. 1.

[31] ejabberd, The Erlang Jabber/XMPP daemon,
http://www.ejabberd.im/.

[32] S. Srirama, C. Paniagua, H. Flores, Social group formation with mo-
bile cloud services, Service Oriented Computing and Applications 6 (4)
(2012) 1–12.

[33] T. E. Foundation, Gef (graphical editing framework),
http://www.eclipse.org/gef/.

[34] T. E. Foundation, Eclipse modeling framework project (emf),
http://www.eclipse.org/modeling/emf/.

[35] LightCrawler, Open source crawler for Java,
http://code.google.com/p/lightcrawler/.

[36] D. Comer, Internetworking with TCP/IP, Volume I, Principles, Proto-
cols, and Architecture, Vol. 3, Prentice hall Englewood Cliffs, NJ, 1995.

34

[37] HAProxy, The Reliable, High Performance TCP/HTTP Load Balancer,
http://haproxy.1wt.eu/.

[38] Tsung, A distributed load testing tool, http://tsung.erlang-
projects.org/.

[39] J. Armstrong, R. Virding, C. Wikstrom, M. Williams, Concurrent pro-
gramming in erlang.

[40] S. Preece, J. Goulermas, L. Kenney, D. Howard, K. Meijer, R. Cromp-
ton, Activity identification using body-mounted sensorsa review of clas-
sification techniques, Physiological measurement 30 (4) (2009) R1.

35

